Supplementary web Table 1 (part 1). Individual hybridization results of each of the probes with each "*Rhodocyclales*" reference organism. Colored boxes indicate hybridization signals with normalized signal-to-noise ratios (nSNR) above 2.0. Green indicates hybridization to a reference organism with a target sequence fully complementary to the probe. Yellow, red, and light blue labeled boxes depict hybridizations with target sequences having one, two, and three mismatches, respectively. Lila was used to indicate hybridizations to targets with more than three mismatches. For each probe-target combination having a weighted mismatch below 4.5 (as determined by the ARB Probe_Match tool) the target sequence (5'-3') on the 16S rRNA gene and the calculated free energy, ΔG, is shown. "=" in the probe target sequences of non-target organisms indicates a matching nucleotide. Probes which were excluded from the RHC-PhyloChip due to insufficient specificity are listed separately at the end of the table. NS = reference organism is not sequenced at the probe target side. Perfect match One mismatch Two mismatches Three mismatches Four and more mismatches NS Positive signal and not sequenced at the probe target site | NS | Negative signal and not sequence | es at the probe target site |------------------------|---|--|----------------------------------|--|--------------------------------------|---------------------------------|--------------------|---|---------------------|---|-------------------------------------|---------------------------|------------|---------------------------------|--------------------------------------|---|------------|-------------------------|------------------------|---|-----------------------------------|--|------------------------------------|---|-----------------------|---|------------------------|---|-------------------------| | | | | | | | | | | | | | | | se reference organisms, 165 iRN | | | | | | | | | | | | | | | | | | Azonexus fungiphilus, AF011350 | Dechloromonas agitata, AF0474 | | welp clone hBPR4, N. Le | | Kraftierled wwtp clone KRRS6, A | | Rhodocyclus tenuis, | | Propionivibrio pelophi | | wwtp clone hBPR24, N | | Azospira oryzan, i | | Wadi Gaza clone WGAR24 | | Azoarous sp. LU1, A | | Azoarcus communis, A | | Azoarous indigens, L | | Thauera terpenica, AJ | | Thauera mechemichen | | Wadi Gaza clone WGARS | | | Probe name
AGEKA458 | Probe target site 5'-3' nSNR AG [kcal
mol ²] | Probe target site 5'-3' nSNF 0, 06 | MG (Recall
mol ²) | Probe target site 5'-3' | nSNR MG (krail
mol ¹) | Probe target site 5'-3' nf | SNR AG Bical mol 1 | Probe target site 5'-3' | nSNR MG [Real mol] | Probe target site 5'-3' | nSNR MG [kcal
mol [*]] | Probe target site 5'-2' | nSNR mai') | Probe target site 5'-2' | nSNR MG (kcall
mol ¹) | Probe target site S-3' | nSNR mal') | Probe target site 5'-3' | nSNR AG (kcal
mod) | Probe target site 5'-3' | nSNR nG (km
mol ⁴) | Probe target site 5'-3' | nSNR AG [kcs
mol [*]] | Probe target site 5'-3' | nSNR aG (kcr
mol') | Probe target site 5'-3' | nSNR nG (kcal
mol*) | Probe target site 5-3' | nSNR AG [kcall
mol*) | | A33-587 | ************************************** | ************************************** | -11,4 | C- | 0,30 -12,9 | | ,59 -9,5 | g | 0,18 -10,0 | | 0,16 | | 0,11 -7,9 | | 0,18 -11,1 | C. | 0,41 -12,9 | | 0,10 -11,0 | | 0,18 -14,4 | | 0,80 -18,7 | | 0,11 -11,4 | 2 | 0,15 -11,4 | 2 | 0,92 -11,4 | | ACCBA443 | -C | =C======CenZeC 0,11 | -10,2 | «Consesses Conden | 0,26 -10,2 | *C=======&C==&== 0 | ,59 -9,5 | ************** | 0,16 -14,6 | scannengeste. | 0,18 -11,4 | COODMANAACCOCCOO | 6,62 -19,6 | goAC | 0,16 -14,6 | | 0,41 | ünkenggennegen Ogge | 0,06 | Oneng/DegenerCongs | 0,07 | | 0,21 | | 0,09 | «Consesses CongCA | 0,12 -9,6 | «Сининини Сийд»? | 0,60 -9,6 | | ACCBA4SS | A20g2g 0,26 | ADD=====gD===g 0,10 | | CA | 0,35 -15,4 | Condenses 0 | ,69 -15,4 | A00g0g | 0,09 | Millerson | 0,12 | CONCUSSIONALIACICO | 6,18 -18,8 | M30gComp | 0,09 | A00g0g | 0,39 | MMgCg | 0,06 | ColigenteConsessions | 0,06 -6,8 | 1/20gDg | 0,28 | A00 | 0,09 | X72************************************ | 0,11 | A02******g0***g | 0,81 | | ACCBA651 | **A***A******************************* | AAC | -12,5 | ndenski neme | 0,26 -12,6 | | ,66 -14,5 | | 1,27 -17,6 | -description | 0,16 -9,8 | CURSADIFFURNICAGARA | 9,74 -20,9 | | 0,14 -12,5 | nderodčenom. | 0,42 -12,5 | | 0,07 -12,6 | esheesskCorressore | 0,07 -12,6 | noheroni/Commons | 0,24 -12,6 | **A***AC****** | 0,10 -12,6 | volume di Communica | 0,12 -12,6 | -sheership- | 0,86 -12,6 | | ACCEAS46 | **de*****de******* 0,28 -11,7 | 0,10 | | | 0,26 -11,7 | | ,62 -9,9 | CA | 0,16 -16,7 | | 0,12 -12,4 | CCUSTRASTOCCOCAACCS | 4,39 -19,7 | | 0,10 -11,7 | | 0,41 | | 0,04 | | 0,07 | | 0,21 | | 0,08 | | 0,12 | | 0,77 | | ATD1459 | | | -17,1 | | 0,26 | 0 | ,61 | | 0,13 -14,1 | C-g-g | 0,40 -17,1 | | 0,12 | | 0,16 -16,2 | | 0,42 | aus | 2,78 | NO. | 1,61 | OCOCUENCIACIONESSANA | 4,33 -22,4 | OCOCUUNCIACOSOSANA | 2,69 -22,4 | GCGCUTACTACGGTHAGA | 4,26 -22,4 | | 0,85 | | ATDe132 | 0,26 | 0,00 | | | 0,25 | 0 | 1,58 | | 0,16 -8,2 | | 0,14 | | 0,12 | | 0,16 | | 0,87 | | 0,06 | | 0,07 | | 0,25 | | 0,12 | gC | 0,16 -16,0 | поўняння Сенталь. | 0,87 -14,6 | | ATDe442 | 0,27 | 0,08 | | | 0,24 | ٥ | 1,60 | | 0,07 | **C*********CAC | 0,10 -11,2 | | 0,10 | | 0,07 | Spherrigeherg | 0,41 | | 0,02 | | 0,07 | Djilannijilanijennej | 0,24 | Oplanopplangenessy | 0,09 | Djånssijanjessej | 0,12 | Djåssrijkrijessrij | 0,82 | | ATDe467 | 0C=0C=80====gg==g== 0,27 | 0,08 | | | 0,26 | ۰ | ,58 | | 0,12 | *************************************** | 0,18 -6,6 | | 0,11 | | 0,11 | | 0,39 | | 0,01 | | 0,07 | | 0,28 | g-0.gg | 0,09 -6,1 | | 0,12 | ************** | 0,81 -7,1 | | ATDe830 | 0,27 | 0,10 | | | 0,28 | 0 | 1,80 | | 0,19 | | 0,21 | | 0,16 | | 0,17 | | 0,41 | | 0,47 -15,9 | ennes Designes of | 0,09 -11,1 | | 0,80 -11,1 | oConsesson alaCosia | 0,10 -11,6 | «Consessed»Covia | 0,14 -11,6 | «Consessed»Covia | 0,93 -11,5 | | AZA1006 | | g==Cg======UD===U 0,11 | | | 0,26 | 0 | ,62 | *************************************** | 0,33 -16,2 | igt | 0,16 -12,7 | j | 0,11 -11,7 | | 0,12 | | 0,40 -11,6 | | 0,08 | СиноСинининаціяданці | 0,07 | | 0,21 | | 0,09 | | 0,13 | <u> </u> | 0,84 | | AZA1252 | ************************************** | ************************************** | -16,4 | | 0,27 | 0 | ,45 | *************************************** | 0,11 -17,7 | *************************************** | 0,18 -17,7 | | 0,12 | | 0,10 -16,4 | | 0,41 | icejCe | 0,07 -15,4 | gC | 0,07 -16,4 | gC | 0,25 -15,4 | | 0,09 -16,4 | ****i******gC***** | 0,13 -16,4 | <u> </u> | 0,86 | | AZA444 | nellerjeliggerikenin 0,26 | Cggggk- 0,09 | | g | 0,26 -10,X | g | -13,8 | ****************** | 0,09 | e-Co-go-ggg-co-As | 0,11 | 090000 | 0,11 | ==0==ge=ggg==&==&= | 0,08 | | 0,40 | | 0,03 | A++-g++++++++i-g+-00 | 0,06 | | 0,24 -15,2 | je | 0,10 -18,8 | gOgClk- | 0,12 -9,6 | | 0,80 -7,9 | | AZAI62 | 0,27 | 0,09 | | | 0,25 | 0. | 1,68 | | 0,18 | | 0,12 | | 0,11 | | 0,11 | | 0,39 | | 0,04 | | 0,07 | | 0,24 | | 0,09 | | 0,12 | <u> </u> | 0,83 | | AZA463 | 0,27 | 0,11 | | | 0,26 | 0 | 1,64 | | 0,15 | | 0,15 | | 0,12 | | 0,14 | | 0,38 | | 0,08 | | 0,07 | | 0,21 | | 0,10 | | 0,13 | <u> </u> | 0,83 | | AZAHBI | 0,28 | 0,12 | -17,3 | | 0,25 | 0 | 1,67 | | 0,12 | G-gu-gag | 0,16 | | 0,11 | | 0,12 | | 0,42 | | 0,08 | | 0,10 | ************************************** | 0,27 -10,9 | жинин Софаниции
Софаниции | 3,29 -18,6 | | 0,14 | | 0,83 | | AZA645
AZA635 | =GminAnnesservines 0,29 -10,0 | 1,33 | -17,2 | A-A | 0,67 -11,1 | -dCAX | ,62 -12,9 | | 0,13 -11,6 | ga-A- | 0,22 -16,0 | | 0,12 | | 3,93 -17,4 | | 0,84 | GCACGGCGAGAGCACGGC | 0,14 -12,7 | | 5,01 -17,2 | -003 | 3,69 -16,8 | *************************************** | 3,29 -18,8 | *************************************** | 4,14 -18,8 | *************************************** | *,*1 -1*,* | | AZABH | 0,48 | 0,10 | Н | | 0.26 | | | | 0.10 | | 0,14 | | 0,11 | | 0,12 | | 0.40 | | 0.07 | | 0.08 | | 0.24 | | 0,10 | | 0,22 | | 0.82 -15.2 | | AZAN130 | 0.29 | 0.12 | | | 0.26 | | 1.64 | | 0.21 | | 0.16 -10.4 | | 0.12 | | 9.17 -12.2 | | 0,44 | | 0.02 -10.7 | | 0.08 -14.6 | | 0,82 -17,7 | 9,0,0 | 0.11 -10.6 | | 0.14 | | 0.84 | | AZANHES | Ogenergelinnhjäng 0,26 | Upressegvinnsågång 0,00 | | Tgenneg vinnskijke g | 0,24 | Ogennegwinnskglang 0 | ,61 | Ogennegnisenskykeg | 0,10 | Ogennegvinnskijkeg | 0,10 | Ogennegvinnskýkeg | 0,11 | | 0,08 | | 0,43 | Ogennegrünnskijkeg | 0,06 | NggeisAgA-g | 0,04 | | 0,24 | Tyg-iihjh-q | 0,09 | Og*****grü***AgAng | 0,12 | Ogg-iAgAng | 0,81 | | AZANGU228 | 0,28 | 0,00 | Н | ******C******d**** | 0,26 -12,4 | | ,41 | | 0,21 -17,7 | | 0,28 -17,7 | | 0,20 -17,7 | | 0,18 -17,7 | | 0,40 -12,4 | **G********** | 0,02 -9,2 | | 0,07 -12,4 | ******C******** | 0,48 -17,7 | ******C*****A**** | 0,10 -12,4 | ******C******** | 0,30 -57,7 | ****** | 1,04 -17,7 | | A2008447 | 0,26 | 0,00 | \Box | | 0,26 | | ,58 -12,0 | | 0,09 | | 0,12 | | 0,10 | | 0,07 | | 0,89 -10,6 | Aggoggonkonsgonske | 0,02 | GAAGAAA ACTOO GAAGACT | 6,49 -20,2 | | 0,22 | | 0,09 | | 0,13 | | 0,83 | | AZIND1023 | 0,28 | 0,10 | \Box | | 0,25 | 0 | 1,61 | | 0,11 | | 0,14 | | 0,11 | | 0,09 | | 0,76 | | 0,68 -19,9 | | 0,11 -16,7 | азовестистамисты | 3,73 -22,3 | | 0,68 -19,9 | | 0,82 -19,9 | | 2,63 | | AZIND433 | | 0,10 | -14,0 | | 0,25 -14,0 | | ,68 -8,6 | C0g | 0,11 -12,8 | energeredejennaka | 0,16 -13,6 | | 0,12 -12,8 | | 0,09 -12,8 | | 0,42 -14,0 | Cokengers | 0,02 -9,2
 errere Crângen | 0,08 -9,2 | OCOCYCCORACISAAAS | 1,83 -20,5 | *******A*C****j*** | 0,09 -8,6 | | 0,14 -14,0 | | 0,86 -14,0 | | AZIND449 | ************************************** | 0,09 | | ······································ | 0,26 -10,7 | 0 | .60 | | 0,09 | | 0,12 | ************* | 0,11 -7,7 | | 0,08 | *************************************** | 0,39 -13,7 | | 0,04 | *************************************** | 0,07 -18,0 | | 0,22 | | 0,09 | | 0,12 | | 0,86 | | AZIND455 | ürülijenmeğensünke 0,27 | AA | -8,6 | ***Arder/Sierres-U | 0,25 -8,0 | enskednessissened 0 | ,61 -8,0 | Gen&Cinestines entire | 0,10 | es@geesegeegede | 0,14 | General Grand Grand | 0,11 -10,9 | 0 | 0,07 -11,0 | ü-Olggigi-k- | 0,41 | | 0,08 | entiged entire entired | 0,07 | COCUDEORICEANIACOCO | 1,88 -28,0 | ioligenengesginie | 0,09 | u-dig-energe-gu-de | 0,12 | u-digggu-d- | 0,83 | | AZP456 | «Gegenn-Cgennnahal 0,28 | UDegenenOgenendeA 0,10 | | | 0,26 | 33-gСуh-А 0 | ,66 | Ci | 0,13 -7,2 | -Organic Cyreges OrA | 0,16 | «Ongo man Cigaragia «On A | 0,12 | BOALOBSCERAGE/SCORE | 0,88 -20,1 | «Organic Cycego» OrA | 0,44 | +0C+2++++++++iD+ | 0,04 -10,2 | -0/22Dy | 0,16 | edejenecijenjendek | 0,28 | -S-jOyyi-A | 0,11 | «Grigo ese Ciprogras Gall | 0,17 | «degeresCyregesda». | 0,91 | | 470471 | V24C++++++++++++++++++++++++++++++++++++ | 0.29 -12.1 | \$100000 D | 08 -18.2 | *50 | 0.25 -12.4 | -032 | 0.59 -12 | u-a | 0.08 -12. | 0 000 | 0.14 -15.4 | 4 -0344-44 | 0.12 -12.0 | CHARACTER 0.12 | -22.5 | -Dis-Asia | 10 -11.8 | | 0.02 | *DAO+CA | 0.06 -11.6 | | 0.23 -12.3 | 0.09 -12.4 | #200 | 0.11 -12.1 | O-ACA-S- | 0.81 -11.8 | |------------|--|-------------|--------------------|----------|--|-------------|--|------------|---|-----------|----------------|--------------|---|-------------|--|-----------------|----------------------|----------|--|------------|---|------------|----------------------|-------------
--|--|-------------|---|-------------| | AZP737 | | 0,27 | 0, | 09 | | 0,26 -11,8 | | 0,69 | | 0,11 | | 0,14 -13,1 | | 0,12 | CCCCCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG | -19,1 | 0,4 | 12 | ************* | 0,08 -12,6 | *************************************** | 0,08 -12,6 | ************ | 0,24 -12,6 | 0,10 -12,6 | ************ | 0,13 -12,6 | | 0,80 | | AZTOLY452 | Dg vianos makes AlCo | 0,29 | Ugolionomianăče 0, | 10 | | 0,21 -9,2 | | 0,64 | | 0,12 | | 0,18 | | 0,12 | 0,09 | | 0,1 | | | 0,07 | | 0,06 | | 0,24 | 0,09 | | 0,13 | | 0,62 | | AZV211 | | 0.80 | | 16 | | 0.28 | | 0.62 | | 0.18 | | 0.17 | | 0.18 | 0.16 | Н | CINCERPORTAL BALL | 6 -21,2 | | 0.07 | | 0.10 | | 0.29 -18.1 | 0.11 | A | 0.15 -12.2 | A | 0.87 -12.2 | | A7VDEN/7 | | 0.76 | | | | 0.76 | | 0.60 -4.4 | | 0.00 | | 0.11 -6.6 | | 0.12 | -0 | -6.6 | | | li-Color | | | | | | | | 0.11 | - | | | BTWOSE3 | AGADOODISTONAATICE | 49.04 -21.2 | ANAMONDO A | 81 -21.0 | MARTINE | 22.84 -21.0 | ACAGOGOGOGOGACACC | 41.62 -21. | MANAGOGGGGGAATACC | 8.35 -21. | | 8.68 -16.1 | 400000000000000000000000000000000000000 | 27.52 -21.0 | 2.61 | -16.2 | MANAGEMENT IN | 12 -21.4 | AGMINIONIMATICS | 2,92 -21,0 | MANAGERIANIZA | .29 -21.0 | MANAGEMENT | 39,22 -21,0 | MANUSCHIMATUR 12.81 -21.0 | AGAGGGGGGGGGAAA/JCCC | 14.99 -21.0 | *************************************** | 92.44 -23.0 | | DAESONO | AAANNA/TIDIAACACA | 0.68 -20.2 | | 11 -15.5 | | 0.24 -11.6 | -0 | 0.60 | | 0.08 | | 0.11 -14.1 | | 0.11 -14.0 | 9.97 | -11.6 | UE-man 0.4 | 0 -11.4 | rinner de constitución cons | 0.02 | W. | .16 -18.0 | sinosido mádo | 0.23 | | | 0.11 | ************************* | 0.79 | | DOMAGASS | | | | | | 0.75 | | | A | 0.00 | | | | | Contribution (Co. C. | | | | | | | | | | 0.06 | -designation (Co. | 0.11 -4.8 | | 0.70 | | 200427444 | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | Printer 14 | _ | | | _ | | | | | proupur. | - The state of | 0,20 | | | | 0.24 | | 0,44 | | 0.10 | | 0,11 | | 0.11 | 0,12 | | | | g. | 0.00 | | | | 0.24 | 0,00 -42,4 | | 0,11 | | | | prounts. | | | | | | 0.76 | | 2.62 | | 0.10 | | 0.14 | | 0.11 | 0.11 | | | | | | -0-0-1 | | | 0.00 -01.4 | 10.75 | 10 ^e Charlestones | 0.11 | | | | DIRTIN | | 100 -27.4 | | | | | | 1.00 | | 1.00 | | 1.00 -11.0 | | | | -27.4 | | | A | 1.00 -11.4 | | 70 -11 | | 1/0 -114 | | A TOTAL PROPERTY AND THE PARTY | 100 -314 | | | | CIRTIE | | 0.91 -19.7 | | 16 -17 7 | articonomic design | 0.27 -11.2 | | 0.70 | | 0.13 | | 0.21 | | 0.14 | -0 | -0.1 | | | | | | | | A.32 -11.1 | - Committee of the control co | | 0.17 -17.7 | | | | CURNAM | | 0.29 -16.6 | | 78 -16 6 | | 0.74 | | 0.61 | | 0.00 | | 0.11 | | 0.11 -16.6 | -0 | -76.6 | -0 | 1 -16.6 | | | | | | 0.14 -16.6 | | | 0.17 -16.6 | | 0.81 | | 107-1044 | DaA- | 0.27 -12.6 | | 09 -12.6 | | 0.26 | 200-200-200- | 0.62 -9.4 | | 0.10 -12. | | 0.78 -17.1 | | 0.11 | 0.09 | -12.6 | | 1 | | 0.06 | | .27 -18.1 | | 0.24 | 0.10 | | 0.12 | | 0.83 | | CHICOLD I | | 0.33 -13.6 | | 11 -11 4 | ~~~ | | | 0.67 | | 0.10 -17 | | 0.10 | | 0.16 -14.1 | | -14.9 | | | | 6.11 | | | | 0.15 | | | 0.14 -11.4 | | | | DIMOSS. | | 2.02 | | 41 -21 4 | | 2.12 -21.0 | | | | | | | | | h A 31 | -12.5 | | | Marchael | 0.10 -17.0 | | | | 0.11 -12.0 | | | 0.14 | | | | PHC M3 | | 0.20 | | | | | | | ************************************** | 13.61 | | 27.15 | | 20.01 | | 20.2 | | | | | | | | 8.92 -13.8 | | | 0.40 -16.5 | | | | DUC175a | | 0.29 -12.6 | | 45 -20 0 | | 1.14 - 11.0 | | 1.04 | | 1.00 | | 1.84 | | 2.12 -22.0 | | -22.0 | | | | | | | | 0.16 | 0.10 | | 0.11 | | | | DUCKTO. | | | | | | | | | | | | | | | | | | | _ | | _ | | | | | | | | | | purcons. | Toleron and the | 0.22 | 704-70 | 16 -15 6 | | 0,21 | Date (1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | 0.21 -15 | | 0.00 | | 0,11 | | 0.72 | 0,00 | -22.4 | ., | | | 1 86 -18 1 | | | armer and a | 1.00 -00.4 | 4.02 -21.0 | (LITTURA PROPERTY CONT.) | 2,22 -22,1 | | | | 810429 | | 1.00 | | | | | | | | 3,00 | | 0.32 | | | | | | | | 0.15 | | | | | | | | | | | PHOTO | | 0.96 -15.7 | | 28 -17 6 | | | | 0.70 | | 6.23 | | 0.16 | | | | -33.4 | | | | . 41 | | 15 -17 6 | | 0.40 -15.2 | | | 141 -111 | | | | PM0428 | | 0.20 -12.6 | | 10 -11 0 | | | | 0.61 | | 1.00 - 22 | | 0.10 | | 0.14 -14.0 | | -14.1 | -de-material | | | | | | | 0.34 -14.5 | | | 0.13 | | | | DWD42 | | 0.26 | | | | 0.76 | -1 | | | 4.14 | | 0.16 | | 0.16 -13.6 | | | | | | . 10 | | | | 0.16 | 0.11 | | 0.14 | | | | DWOTE +200 | | 0.80 -16.2 | | 12 -15.2 | | 0.26 | | 0.61 | AATOO BEAAAATOO MATTI | 1.24 -22 | | 0.11 -12.1 | | 0.11 | 0.18 | -15.2 | | 100 | | 0.03 -12.9 | | 0.07 -14.6 | | 0.25 -14.6 | 0.32 -17.2 | | 0.13 -14.6 | -Ardreidens-Gree | 0.80 | | 63.44 | | | | 10 | | 0.75 | | 0.50 | | 0.16 | | 0.10 | | 0.11 | | | | | | . 10 | | | | 8.15 | 0.12 -12.1 | | 0.12 | | | | STEBA1424 | Akangangakannian | 0,28 | Akaragangalannana | 13 | Adminigracion accession* | 0,26 | | 0,59 | -10g-11-11-11-11-11-11-11-11-11-11-11-11-11 | 0,10 -14 | 1 100 | 0,16 -14 1 | Advenijanja ževenija i | 0,11 | -G | -11.7 | Garragangalarandad A | 12 | | 0,38 -10,5 | AbreejerijeZerenikeli | 1,12 | 4 | 0,64 | U | u | 0,37 | AhrengengeArrended | 0,62 | | STEBA214 | | 0.29 | | 10 | Jacobs | 0.24 | | 0.63 | | 0.17 | | 0.16 | | 0.11 | 0,00 | H | | 60 -13 ° | | 0.08 | | | | 0.27 -19 4 | 0.70 | | 0.18 -19.4 | | 0.85 -19.6 | | STERAGO | | 0,28 | | cs. | | 0,26 | | 0,63 | | 0,08 | | 0,11 | | 0,11 | 0,12 | H | | 100 | | 0,62 | CS+C+g+++g+++iii+iSi | 0,06 | | 0,24 | 0.00 | *************************************** | 0,11 | | 0,81 | | STEDANS | | 0.29 | | | | 0.26 | | 0.58 | OE managarina | 0.12 | Output Control | 0.14 -10.1 | | 0.11 | 0.10 | | 0.1 | | | 0.06 | | 0.07 | | 0.24 | 0.09 | | 0.12 | | 0.81 | | STERAGE | «C | 0,28 -9.1 | | 09 | | 0,26 -11,0 | | 0,61 | | 0,15 | | 0,16 | | 0,11 | o, to | -11.6 | | | »Connection Codes | 0,08 -8.4 | | 0,10 | «Connecting Chaiges | 0,25
-0.6 | Calogo 0.10 -11 6 | CoAeges | 0,14 -11.6 | C-A-g 0 | 0,86 -11,6 | | STEBASKO | | 0.26 | - | 08 | | 0,24 | | 0,60 | CogenheresOcc | 0.08 | | 0,12 -9,8 | | 0,10 -6,9 | 0,14 | | | | | 0.02 | | 0.06 | | 0.23 | | | 0.12 | | 0,79 | | THATE461 | Ondergo-general popular | 0,30 | 0, | 14 | | 0,24 | OnkeggergenngejOs | | OninggongenengagOn | | | 0,16 -10,1 | | 0,10 -6,9 | 0,08 | H | 0,1 | | | 0.10 | | 0.10 | | 0.27 | CUCURACAMADDODUMO 3,65 -18,2 | | 0,14 -8,9 | | 0,85 -10,8 | | | | | | | | | GeheggergeringegGe | 0,71 -13, | | | | 0,18 -10,1 | | 0,11 | 0,18 | \vdash | | | | 0,39 -13,2 | | 0,20 -14,1 | U33.+1g++++1g++1g+2g | 0,29 | uzkenjigenegerjeg 0,10 | | 0,83 -16,3 | | 25,88 -20,0 | | THALHAS | | 0.28 | 0, | 76 -16,3 | - The state of | 0,25 | | 0,71 -13, | | 0.09 | 0A-gC | 0,18 | | 0.11 | 0,13 | H | | | - Annual Control | 0.01 | | | | 0.26 | USA-999-9-99 0,10 | COCOCACUCUAACAMAC | | | 0,86 -11,0 | | THALMSS | | 0,26 | 0, | 08 | | 0,24 | | | | 0,10 | 0-cacg | 0,11 | | 0,11 | 0,10 | \vdash | 0,1 | - | | | ľ | | | 0,24 | 0,09 -12,6 | | 0,12 -12,1 | | 0,80 | | THALHES | | 0,28 | 0, | 100 | | 0,24 | | 0,67 | | 0,10 | 0-CaCyC | 0,11 | | w,sl | 0,08 | $\vdash \vdash$ | 0,1 | | | w, 01 | | , 48 | | v,24 | 0,08 | | J,13 -12,1 | | 0,80 | | THALHEE | | 0,29 | 0, | 11 | | 0,25 | | 0,64 | | 0,87 | | 0,14 | | 0,12 | 0,12 | | 0,4 | K3 | | 0,08 | | 0,07 | | 0,24 | 0,09 | *************************************** | 0,13 -11,2 | 0 | 2,87 | | THAUS80 | | 0,28 | e-CA-Og | 0,08 -9,6 | **CA+G********************************** | 0,28 -12,1 | | 0,72 | esCAsGenerajenses | 0,08 -9,6 | esCAsGenerajenses | 0,11 -9,6 | CA-G | 0,18 | 2,3 | 0,07 | ==CA=G======= | 0,46 -1 | 2, 3 ==CA=0====g===== | 0,01 -9,6 | CA-G | 0,06 -12 | | 0,92 | ar Claritan | 0,12 -11 | ., 2Chr3 | 0,16 -12,3 | Cle8 | 1,06 -12,8 | |-----------|---|-------------|---|------------|--|------------|------------------------|------------|--|------------|--------------------|------------|-------------------|--------|-------------------|-----------------|---|---------|---|------------|------------------------|----------|----------------------|------------|---------------------|----------|--------------------|---------------|--------------------|-------------| | THAU832 | | 0,27 | | 0,13 | | 0,26 | | 0,66 | | 0,10 | | 0,15 | | 0,11 | | 0,10 | | 0,41 | | 0,06 | | 0,09 | | 0,26 | GEOCOGRAGOAGOCA | 3,63 -21 | ,7 GUUCHGARCAGUA | EA 8,07 -21,1 | P GUUCUSANCAGUAGUA | 11,06 -21,7 | | UNIV1389a | COUNTRACACACCOCCCO | 5,69 -22,2 | синизмеженеевсееви | 1,69 -22,2 | | 0,30 | | 0,72 | CUMPIACACACCOCCOM | 1,72 -22,2 | CURREACACCOCCORI | 2,07 -33,1 | 2 | 0,14 | COMMUNICACINOCONO | XXXX X,21 -22,1 | | 0,48 | CUMPIACAC ACCRICCOM | 1,96 -22,2 | 22 | 2,76 | CSSSSACSACSACSCOCCSS | 1,26 -22,2 | CESSES CACACOSCOCOS | 2,26 -2 | 1,2 CUUSTACACOGCOO | 2,81 -22,5 | | 0,92 | | UNIV1386b | C | 12,69 -21,1 | C | 3,60 -21,1 | | 0,37 | | 0,97 | C | 1,66 -21,1 | C | 3,63 -21,1 | | 0,19 | C | 3,25 -21,1 | | 0,49 | C | 2,46 -21,1 | 202 | x,60 | c | 1,74 -21,1 | C | 2,67 -2: | ,1 C | s,01 -21,1 | | 1,06 | | UNIV1389c | *************************************** | 1,17 -20,6 | *************************************** | 1,60 -20,6 | | 0,41 | | 0,94 | | 0,46 -20,6 | | 0,69 -30,1 | | 0,18 | *********** | 0,92 -20,5 | | 0,49 | | 0,96 -22,6 | 202 | 0,77 | | -20,6 | | 0,88 -21 | , 6 | 1,46 -20,6 | | 1,01 | | 20GL01416 | | 0,26 | | 0,09 | | 0,25 | | 0,60 | | 0,11 | | 0,14 | | 0,12 | | 0,12 -11,6 | | 0,88 | | 0,09 -12,1 | | 0,07 | | 0,26 -12,1 | | 0,10 -11 | 1,1De-C | 0,13 -12,1 | | 0,63 | | 20GL0455 | | 0,28 | | 0,11 | ************************************** | 0,25 -6,7 | anakiga e Danasa e Can | 0,62 -6,7 | | 0,18 | | 0,14 | | 0,11 | | 0,18 | ==G=====C=====C== | 0,41 -1 | 2,4 | 0,06 | estivinge «Consentico» | 0,09 | | 0,26 | | 0,10 | | 0,14 | | 0,88 | | 20GL0647 | Δρ | 0,28 -18,6 | -C-g | 0,11 -16,4 | -Ag | 0,60 -16,7 | Clag | 0,68 -12,9 | «CogonomorDinomo | 0,11 -9,8 | -Ogggu-A | 0,18 | .lgg | 0,11 | 9,1 9899 | 0,18 -16,4 | | 0,64 | ×099 | 0,06 -16,4 | | 0,09 | Chigg | 0,34 -15,4 | -199 | 0,18 -1 | .4 -599 | 0,20 -16,4 | -299 | 1,27 -16,4 | | 20GL0828 | | 0,28 | | 0,08 | | 0,24 | | 0,61 | | 0,08 | | 0,12 | | 0,10 | | 0,08 | | 0,42 | | 0,01 -11,8 | | 0,04 | | 1,22 | | 0,08 | | 0,12 | | 0,60 | | 20RAM211 | | 0,27 | | 0,10 | | 0,28 | | 0,61 | | 0,24 | | 0,18 | | 0,10 | | 0,16 | | 0,40 | g-Ag00 | 0,07 -10,0 | g-Ag05 | 0,07 -10 | .0 | 1,27 | | 0,11 | | 0,16 | | 0,67 | | 20RAM441 | gettergeneening | 0,82 -11,8 | geCCongressors | 0,11 -12,6 | g=CC==g======== | 0,31 -12,6 | ==CC==g=====A=== | 0,68 -9,8 | 9-09-9 | 0,11 -9,2 | g=00:=g======0=== | 0,18 -8,9 | gaOganganananisad | 0,10 | 9-099 | 0,11 -9,2 | gaCCaagaaaaaaaaa | 0,41 | gCAA++g+++++++GC | 0,06 | | 0,07 | galConnection | 1,38 -14,7 | ==CC==Q=====A.=== | 0,09 -9 | ,8 g=00=g======= | eg 0,14 -11,6 | 9-00-9 | 0,62 | | | | | | | 1 | | 1 | | | | , | 1 1 | , | 1 1 | | | 1 | | | | Г | 1 1 | 1 | | | | | | | | | AZA1269 | 2ag | 1,17 -18,2 | ************************************** | 0,96 -18,2 | | 0,26 | g33gag | 0,67 | **89********************************** | 0,29 -15,2 | Ogü-âg | 0,18 -12, | 7 | 0,11 | 0 | -Ag 1,14 -18,2 | | 0,19 | *************************************** | 0,08 -12,6 | | 0,12 -16 | ,7 | -16,7 | 2 | 1,41 -1 | ,20 | 3,12 -18,6 | | 0,82 | | AZA221 | Сординенностиническа | 0,80 | | 0,14 | | 0,27 | | 0,60 | | 0,16 | C00+C++++C++++++ | 0,16 -12,6 | 6 CUC-gC | 0,18 - | 2,8 000 | 0,11 -13,7 | C | 0,64 -1 | 6,7. DEMOTORARIONOCCIMARI | 6,83 -22,9 | | 0,84 -17 | C | -16,7 | CAC. | 0,14 -11 | ,1 C | 0,28 -16,5 | C | 1,17 -16,7 | | AZA234 | | 0,29 | ********************* | 0,20 | Càà- | 0,92 -11,7 | | 0,80 | CA- | 1,27 -17,0 | Commence | 1,28 -17,0 | C | 0,64 - | .7, D C | -A- 0,82 -17,5 | Consendance | 0,44 -1 | 5,7 CAA- | 0,08 -11,7 | C2 | 0,40 -11 | .7 C | 1,16 -17,0 | Cassassian | 0,28 -1 | ,4 C | 5. 0,67 -17,6 | C | 2,24 -57,0 | | AZA629 | | 0,29 | | 0,12 | | 0,29 | | 0,67 | | 0,20 | | 0,19 | | 0,14 | +C+++G+2A+O+U | A 0,22 | | 0,60 | | 0,24 -11,6 | | 0,28 -9, | 2 | 2, 27 | | 0,19 | | 0,21 | | 1,07 | | BONESS3 | g | 7,32 -17,8 | | 2,67 -17,8 | *************************************** | 3,91 -17,8 | | 5,96 -17,8 | | 2,70 -17,8 | | 0,27 -11,1 | | 3,49 - | | 0,23 -13,0 | *************************************** | 2,88 -1 | 7,8 | 1,42 -17,8 | | 2,18 -17 | | -17,8 | ************** | 4,92 -1 | , | 5,12 -17,8 | | 13,80 -17,8 | | RHOTE206 | | 0,26 | enjCularessessonj | 0,28 -14,6 | CegCeAegessessesC | 0,40 | negColonessusses | 0,62 -14,6 | DOUBLIANS COURCEOU | 4,69 -22,6 | | 0,48 | nejCalassessesseC | 0,24 - | 4,4 | 0,35 | нено Синтення ійнеўА | 0,40 -1 | 2, ś | 0,11 | | 0,07 | С | -11,8 | | 0,10 | | 0,13 | | 0,86 | | PPV1239 | λ | 0,44 -17,9 | | 0,27 -17,0 | | 0,46 -16,8 | | 0,62 -13,6 | | 0,18 -16,8 | AUSSECCESTOCANADOS | 2,86 -20,0 | | 0,29 | | 0,22 -17,9 | | 0,62 -1 | i, s | 0,16 -17,0 | | 0,16 -17 | | -17,9 | | 0,33 -1 | | 0,48 -17,6 | | 1,49 | **Supplementary web Table 1 (part 2).** Individual hybridization results of each of the probes with each "*Rhodocyclales*" reference organism. Colored boxes indicate hybridization signals with normalized signal-to-noise ratios (nSNR) above 2.0. Green indicates hybridization to a reference organism with a target sequence fully complementary to the probe. Yellow, red, and light blue labeled boxes depict hybridizations with target sequences having one, two, and three mismatches, respectively. Lila was used to indicate hybridizations to targets with more than three mismatches. For each probe-target combination having a weighted mismatch below 4.5 (as determined by the ARB Probe_Match tool) the target sequence (5'-3') on the 16S rRNA gene and the calculated free energy, ΔG, is shown. "=" in the probe target sequences of non-target organisms indicates a matching nucleotide. Probes which were excluded from the RHC-PhyloChip due to insufficient specificity are listed separately at the end of the table. NS = reference organism is not sequenced at the probe target side. Perfect match One mismatchs Two mismatches Three mismatches Four and more mismatches NS Positive signal and not sequenced at the probe target site NS Negative signal and not sequences at the probe target site | | | signal and not sequer | | , | | | | | | | | | | | | 65 rPNA gene sequence accession number | | | | | | | | | | | | | | _ | |---|-------------|---|---------------|-----|---|-------------|-------|---|------------------------
---|--------------|--|--------------|---|--------------|---|----------|-------------------------------------|------|--|-------|-----------------------------|---------------|---|---------------|---|-------------|---------------------------|--------------|-------------| | Kraftieried watp Klon S | I, AF072918 | Kraftaried wwtp Klon | N33, AF072925 | _ | Kraftieried wwlp Klon 523 | 3, AF072921 | _ | Azoarcus anaerobius | Y14701 | Azparcus evansi | , X77679 | Kraffserled wwtp Klon H7 | AF234684 | Rhodocyclales ref
wwtp clone BNP269, N. Le | | | - | Kraftlerled wwtp Klon A16, AF23H726 | _ | Kraftieried welp Klon 521, AF2347 | 30 | Kraftieried wwtp clone KRZI | H, AY589092 | Kraftieried welp Klon HZ | 3, AF072926 | Kraftieried wwtp Klon At | 3, AF072927 | Kraffirled wwtp clone KRA | 34, AY689089 | + | | Probe target site 5-3' | nSNR AG [ki | | | | Probe target site 5'-3' | nSNR | | Probe target site 5'-3' | nSNR AG [kcal
mol*] | Probe target site 5'-3' | rSNR AG (kca | Probe target site S-3' | nSNR AG (kca | | nSNR AG (Nca | Probe target site S-3' nSNR ^{Al} | | Probe target site S-3' mSNR ms | | Probe target site S-3' nGNR | | Probe target site 5'-2' | nSNR AG [kcal | Probe target site 5'-3' | nSNR nG (kcal | Probe target site 5'-3' | | | nSNR AG [| | | | 0,09 | | 0,06 | | | 0,07 | , | | 0,08 | sCeCessessessaliges | 0,08 -11,1 | | 0,11 | | 0,29 -8,2 | 0,44 | , | 0,10 | | 0,11 | 120, | | 0,46 | | 0,09 | | 0,09 | GesCessesses-CoAC | 0,78 -10 | 10,5 ACREA | | | 0,16 -14, | 4 OCCUPANIANA AND CO | 0,19 -1 | 2,9 | | 0,27 | -14,4 | | 0,17 -13,0 | ,0 | 0,19 -18,0 | | 0,14 | *************************************** | 0,38 -10,0 | ************************************** | 10,0 | M | 10,0 | 0,11 | -10,0 | ***** | 0,49 -10,0 | AD | 0,12 -18,0 | | 0,10 | | 0,81 | A33-58 | | | 0,09 | | 0,06 | | | 0,07 | | | 0,08 | | 0,08 | | 0,12 | unhooggenoogentigge | 0,30 | 0,60 | | 0,11 | | 0,11 | | | 0,61 | | 0,11 | | 0,10 | | 0,76 | ACCEAN | | A00gGg | 0,09 | A10ggg | 0,06 | | A00g0g | 0,07 | | A10g2g | 0,08 | A00grg | 0,08 | CorAsCorregossosseg | 0,12 -7,8 | A210g0g | 0,29 | AUX=======g0===g 0,63 | | Candadassassassis 0,10 -13 | 11,1 | A00g0g 0,11 | | XXXgCg | 0,99 | X72++++++-g2++-g | 0,11 | 100gpg | 0,10 | A35g0g | 0,82 | ACCEAN | | **de********************************** | 0,09 -12, | 5dadC | 0,06 -1 | 2,6 | ZAC | 0,08 | -12,6 | **2************************************ | 0,08 -12,6 | **A****AC********* | 0,08 -12,6 | **A****AC******* | 0,17 -12,6 | *************************************** | 0,40 -12,6 | enterenticements 0,70 - | 14,6 | nodomonkiinneenneen 0,16 -11 | 12,6 | AAC | -12,6 | AAC | 0,72 -12,6 | | 0,19 -14,6 | | 0,22 -14, | j | 1,67 -18 | H, X ACCEAN | | | 0,09 | | 0,06 | | | 0,07 | | | 0,08 | | 0,08 | | 0,11 | | 0,31 | 0,46 | | 0,10 | | 0,10 | | | 0,47 | | 0,10 | | 0,09 | | 0,76 | ACCEAE | | GCGCSUAACCAAGGGGGAGA | 2,92 -22, | 4 OCOCCUANCACOROGANA | 3,57 -2 | 2,4 | OCCUPANCA COSSISSAMA | 3,45 | -32,4 | GOSCOVACIACIONISASA | 2,46 -22,4 | OCOCCUMOTACOSO GANA | 2,27 -22,4 | ************************************** | 3,66 -21,7 | ************************************** | 8,27 -21,7 | 0,69 | - | 7,27 -21 | 21,7 | 4,23 | -21,7 | | 0,56 | *************************************** | 3,13 -20,3 | *************************************** | 4,67 -33, | 1 | 0,82 | ATD140 | | GLUODIAMAAACOD | 9,97 | * CUIDINADAD | 0.82 | 0.8 | GEOGRAPHICA DE SONO | 7,14 | -20,8 | tykenggkergenneg | 0,08 | Djilonegjilongenoog | 0.08 | Dykennykenjenneg | 0,12 | | 0,32 | CgSS-egenhauses 0,67 | \dashv | 0,13
0,5a
0,5a
0,09 | - | 0,12
DjAnnejAnsjenneg 0,10 | | Ojdannojdanojemnoj | 0,68 | | 0,12 | | 0,12 | | 0.83 | ATDet: | | CAUAGOAGCCGAAGGACG | 1,76 -17, | 2 CREMONAUCCHANDRACO | 1,86 -1 | 7,2 | CAURODAUCCUARDUACU | 2,41 | -17,2 | | 0,08 | | 0,08 | .,,, | 0,12 | | 0,30 | 0,48 | | 0,10 | | 0,11 | | | 0,46 | u-cyc-a | 0,10 -8,3 | GrOger-Codessesses | 0,10 -8, | GrOgerColdensess | 0,76 - | -s,s ATDell | | ODDOCCHEMA COMPANACO | 12,36 -21, | 4 0000000000000000000000000000000000000 | 14,64 -2 | 1,4 | STOREGUNAROSOSTAACO | 10,37 | -21,4 | gAa0 | 0,12 -11,4 | -CD | 0,16 -14,8 | | 0,16 | | 0,31 | 0,60 | | sussessification 0,15 -8 | -8.0 | 0,15 | | | 0,62 | | 0,11 | | 0,11 | | 0,88 | ATDelt | | OCCUUMNAMAGORAGONA | 1,39 -19, | S OCCUDANAZADRAJONA | 2,26 -1 | 0,6 | OCCUDIA/ANIA/JCA/200A | 3,21 | -19,8 | | 0,08 | DOCUMENTAL DESIGNATION OF THE PERSON | 2,02 -19,6 | iglg | 0,14 -18,6 | | 0,12 | 0,61 | | 0,18 | | 0,12 | | | 0,67 | | 0,11 | | 0,10 | | 0,84 | AZA100 | | ç | 0,09 -16, | 4gc | 0,06 -1 | 5,4 | gc | 0,09 | -15,4 | gc | 0,08 -15,4 | ASSOCIATIONAL | 8,90 -24,8 | ****G********************************* | 0,12 -15,4 | GgC | 0,38 -16,4 | (C | 15,4 | in | 15,4 | ************************************** | -16,4 | jC | 0,60 -16,4 | *************************************** | 0,18 -17,7 | *************************************** | 0,10 -17, | 7 | 0,88 -5 | 14,1 AZA12 | | | 0,10 | | 0,06 | | | 0,07 | | utcaggeoggeeeea | 0,08 | CHRAMMAAACHCUUCC | 2,54 -19,9 | | 0,25 -16,2 | ünnen en Grenden ü | 0,29 -11,3 | ************************************** | - 8 , 8 | U | 14,8 | e-Cengengggerenaka 0,11 | | gCAG | 0,67 -12,1 | esCongregggerrada | 0,11 | ««Синдиндаўсянняй» | 0,10 | | 0,79 | AZAM | | | 0,10 | | 0,06 | | | 0,08 | | | 0,08 -11,4 | | 0,08 | | 0,12 | | 0,30 | 0,60 | | 0,11 | | 0,11 | | | 0,49 | | 0,12 | | 0,12 | | 0,80 | AZA4S | | | 0,36 | | 0,26 | | | 0,27 | | ************************************** | 0,28 -17,0 | | 0,10 | | 0,14 | | 0,33 | 0,69 | | 0,18 | | 0,12 | | | 0,64 | | 0,12 | | 0,11 | | 0,78 | AZA46 | | ******CoArg | 0,11 -9,1 |)C-A | 0,07 -1 | 0,8 | C-A | 0,12 | -10,8 | CONTRICUSTICASAASIAS | 2,14 -18,6 | CONTRACTORISTANA SIANI | 2,95 -18,6 | CA | 0,14 -10,9 | CA | 0,38 -12,7 | 0,64 | 10,9 | 0,13 -11 | 12,7 | Cogk | -9,6 | Седа | 0,60 -9,5 | | 0,14 | | 0,12 | | 0,85 | AZA40 | | *************************************** | 2,66 -18, | * | 2,70 -1 | *.* | *************************************** | 3,41 | -18,8 | осысовскимовыевос | 4,51 -22,5 | OCACOOCUASARIA COOC | 9,29 -22,5 | | 0,16 -18,1 | *************************************** | 0,36 -13,1 | 0,61 | 13,1 | 0,14 -11 | 13,1 | 0,13 | -13,1 | GAA | 0,66 -11,1 | | 0,15 | | 0,14 | eigCelengerenginen | 0,82 | AZASA | | | 0,10 | 2 | 0,06 | 1,2 | *************************************** | 0,08 | -51.9 | ************************************** | 0,10 -15,1 | | 0,09 -8,1 | | 0,13 | | 0,14 | 0,57 | + | 0,12 | | 0,12 | H | | 0,67 | G | 0,11 -12,1 | 00 | 0,11 -12, | 1 Ossessa Ağısısı sırıl | 0,84 -12 | 12,1 AZABS | | | 0,18 | | 0,08 | - | | 0,10 | ,- | ACREMICOLATROSIAGROSS | 3,71 -22,2 | | 0,14 -16,2 | ************************************** | 0,72 -19,4 | | 0,30 | 0,45 | | 0,07 -11 | 19,4 | 0,12 | -19,4 | | 0,93 -19,4 | | 0,19 -17,0 | *************************************** | 0,12 -17. | | 0,91 -1 | 17,0 AZAN1 | | Opennogeisenhijkeij | 0,10 | Opennogeisenhyley | 0,06 | | Tyrenegeisenligheg | 0,07 | | AACMICCOAGCCOGACGA | 0,33 -20,3 | Cjerrejvireskýkej | 0,08 | Opennegvinenhjäng | 0,12 | Openengeinenhjäng | 0,30 | Сунтиндальнай 0,67 | Ī | Cgennegeinnak@Ang 0,10 | | Ogenesejsisenhijkeg 0,11 | | Ogennegvinnskýkog | 0,66 | | 0,10 | | 0,10 | | 0,84 | AZANA | | ******C*****A**** | 0,10 -12, | 4 ******C******A**** | 0,06 -1 | 2,4 | errer Consendance | 0,08 | -12,4 | ARCHICUMANIPOCHIANO | 1,04 -21,8 | ******* | 0,42 -17,7 | ************ | 0,30 -17,7 | ******C******** | 0,35 -17,7 | 0,70 | 17,7 | 0,28 -1 | 17,7 | 0,38 | -17,7 | | 0,69 -17,7 | ************************************** | 0,11 -18,6 | ******C***A****** | 0,11 -13, | i | 0,88 -1 | 13,5 AZANDI | | | 0,09 | | 0,06 | | | 0,08 | | | 0,08 | | 0,10 | | 0,11 | *0g*0g****g*************************** | 0,30 | e-geggenker-gernhC 0,42 | T | 0,10 |
 0,11 | | | 0,42 | | 0,10 | | 0,09 | | 0,76 | AZCOM | | <u> </u> | 0,66 -15, | λ | 0,81 -1 | *,0 | <u> </u> | 0,94 | -19,0 | <u> </u> | 0,32 -19,0 | j | 0,48 -19,0 | | 0,12 | | 0,36 | 0,49 | | 0,12 | | 0,11 | | | 0,60 | | 0,12 | | 0,10 | | 0,81 | AZNO1 | | de-Diregens | 0,10 -7,1 | i | 0,06 -1 | 7,6 | deSinger | 0,08 | -7,6 | | 0,12 -16,2 | | 0,23 -15,2 | dej | 0,16 -18,6 | Argi | 0,29 -10,0 | 0,44 | 16,2 | 0,10 -10 | 10,0 | 0,11 | -11,1 | | 0,46 -11,1 | ************************************** | 0,10 -12,3 | | 0,10 | | 0,79 | AZNOr | | | 0,10 | | 0,06 | | | 0,08 | | | 0,09 | | 0,09 | | 0,12 | | 0,28 | 0,44 | | 0,10 | | 0,11 | -13,9 | ************* | 0,46 -13,9 | | 0,10 | | 0,10 | | 0,76 | AZINDA | | i-Sigggirls | 0,09 | i-Skpge-gink- | 0,06 | | iothjennogogiske | 0,08 | | | 0,09 | irdigereegesgirds | 0,09 | indAggurde | 0,12 | | 0,32 | 0,42 | | undAgenesgengunde 0,11 | | u-dAg-****gr-qu-d+ 0,11 | | u-dkggu-d- | 0,48 | ArdSquaregerrinds | 0,11 | Addgenengensude | 0,10 | Arthyrenegeneinte | 0,79 | AZINDA | | -Organic Ognogen And | 0,12 | -OrganicOgraphianh | 0,10 | | =OrganicQregonanA | 0,18 | | -0-99-9-0-8 | 0,08 | +3+2++++03++3++0+A | 0,18 | »»«О»»«йде»»«С»»«А | 0,16 -8,9 | | 0,33 | 0,44 | | =G=g===Cg==g==G=A 0,17 | | «Gegene-Ogenge-GeA 0,14 | | =O+g++++Cg++g++O+A | 0,49 | -degeneration and all | 0,11 | edege eee Ogeneee daA | 0,11 | =O=g====Og=====O=A | 0,78 | AZP45 | | | | 1 | | 1 | | | 1 | | | | | l | | 1 | II | | | | | 1 | | | | | | | AZP471 | |---|-------------|---|--------|-------|---|---------|-------|---|------------|---|------------|---|-------------|---------------------|------------|--|---|---|----------|---|-------------|--|--|-------|---------------------|-------------|-----------| | | 0.10 | | 2.06 | | | 0.00 | | | 0.00 | | | | 6.12 -13.7 | | 0.30 -11.7 | 5.44 -11.2 | | | | | 2.44 | 0.11 | A 11 | | | | AZP737 | | | 0.10 | | 2.06 | | | | | | | | | | | | | 0.50 | A 11 | | | | | 0.17 | 0.11 | | | | AZTOLY452 | | | 0.11 | | 2.02 | | | 0.10 | | | 0.00 -11.1 | | | | 0.14 -10.4 | | | | Andrew Communication of the color | | | | 2.0 | h | haracter and the | | h | | AZV211 | | *************************************** | | - Mariana and a san | 2.25 | -1.7 | all'advances (hanna | 0.07 | -1.7 | | | - Martine Comm | 0.04 -7.7 | 400000000000000000000000000000000000000 | 0.11 | 470000000 | | | -Made-const-Const- | -Mades-services A. S. | | -87 | | 10000000000000000000000000000000000000 | | -6.1 | 100mm20m0 | | 47/9EM7 | | AMADOMINATURE | 12.56 -21.0 | ACADOMISTONALIUC | 2.61 | -21.0 | AZAGONISTINIANIUS | 6.21 | -21.0 | MANOGRAMMATICS | 6.31 -21.0 | ACADOMICONALINE | 8,28 -21,0 | | 4.71 -15.9 | | 3.90 -15.9 | 12,44 -15,9 | 5.10 -15.9 | 4.5 | 7 -15.9 | | 14.28 -15.9 | AMONOMIC 14.04 -21.0 | AMADONOMICO 17,31 | -21.0 | MANAGORIANA | 51.36 -21.1 | BTWO663 | | ninn nindan naniDeC | 0.09 | - Served de constitució | 0.06 | | | 0.07 | | -00-C | 0.08 | sin side and the | 0.08 | edenomedan endere | 0.11 -12.1 | | 0.28 -12.1 | 0.50 -11.6 | ************************************** | -9 | | -0 | 0.49 -12.1 | | rinnario de la constanta | | nin mindum MaC | 0.80 | DAESTOO | | | 0.00 | | 2.06 | | | 0.07 | | | 0.07 | | | | 0.11 -10.8 | | 0.78 | 0.46 | 0.10 -10.1 | | | | | 0.10 | ## A ## | | | | DOMESTS | | | 0.12 | | 0.08 | | | 0.10 | | | 0.08 | | 0.09 | | 0.12 -11.7 | | 0.32 | 0.50 | 0.14 -12.9 | | 1 | | 0.54 | 0.11 | 0.11 | | | 0.76 | DEMFEASS | | | 0.09 -12.1 | | 0.06 | -12.2 | | 0.07 -: | -12.2 | OXC | 0.07 -12.1 | 06 | 0.08 -12.1 | 09 | 0.12 -16.0 | 000 | 0.28 -12.1 | 0.53 | 0.11 -15.0 | 0.1 | 1 -15.0 | | 0.62 -16.0 | 0.09 -12.4 | | -12.4 | | 0.78 -12.4 | DENAR176 | | | 0,10 | | 0,06 | | | 0,07 | | | 0,09 | | 0,08 | | 0,12 | | 0,31 | gCASAggg8- 0,71 | 0,11 | 0,: | 2 | | 0,62 | 0,11 | 0,10 | | | 0,87 | DENARASI | | -gClasslassasiass | 0,10 -9,9 | *gClassAssassians | 0,06 | -9,9 | -gClassianssians | 0,08 - | -9,9 | *************************************** | 0,09 -12,8 | ==Classidasjassass | 0,0# -11,1 | **CMireAnssesses | 0,18 -11,4 | | 0,31 | ==CNi=she======= 0,72 -11,4 | ##CM###A############################### | 0,3 | 3. | **CViral******* | 0,65 -11,4 | 0,13 | 0,16 | | | 0,88 | DENARSHS | | ACTUCUACOSSASOCASC | 1,00 -22,4 | ACCCCVACOSOSAGOCAGO | 1,00 - | -22,4 | ACUCCUACIONAMOCANIC | 1,00 -: | -22,4 | ACTICITACIONAGOCAGE | 1,00 -22,4 | ACUCCUMODOMODEMIC | 1,00 -22,4 | actuccus/coopaagoca/sc | 1,00 -22,4 | ACCCCIACGOSAGGCAGC | 1,00 -22,4 | ACUCCIACOS BARGO AND 1,00 -22,4 | ACUCCUACOSSANDOADC 1,50 -22,4 | ACUCCUACOSSASSCASC 1,0 | 0 -22,4 | ACCOCCACOCCACICAC | 1,00 -32,4 | ACCOCCACCIONAMISCANC 1,00 -22,4 | ACTOCTTACTONIAMSTAGT 1,60 | -22,4 | ACUCCUACOSSAGSCASC | 1,00 -22,4 | EU8338 | | s «Dennes allen allen | 0,18 -18,1 | 2 sellennennekensken | 0,07 | -18,2 | **Consessabasedes | 0,11 - | -18,2 | ****************** | 0,11 -18,2 | solvensen mån mån mån m | 0,11 -18,2 | | 0,14 -18,2 | e-Consessaberator | 0,16 -11,2 | ==0======de==de== 0,64 -13,2 | ************************************** | O | 3 -13,2 | esQueenendamides | 0,66 -13,2 | ==0=======do==do== 0,16 -13,2 | selessessedensker 0,13 | -13,2 | es@essessedessdes | 0,88 -13,2 | EU03381 | | | 0,09 -16,6 | i | 0,06 | -16,6 | | 0,07 - | -16,6 | D | 0,08 -16,6 | | 0,08 -16,6 | *************************************** | 0,11 -16,6 | | 0,29 -16,6 | **C*********************************** | **O*********************************** | *************************************** | 1 -16,6 | CL | 0,46 -16,6 | ************************************** | e-G | -16,6 | | 0,76 -16,6 | EU933811 | | | 0,10 | | 0,06 | | gRessesConsignment | 0,08 - | -12,9 | | 0,08 | | 0,08 | ANALUMANANANANANA | 8,88 -22,3 | | 0,31 | 0,49 | 0,11 | 0,1 | 2 | | 0,49 | 0,10 | 0,10 | | | 0,76 | H7-1014 | | | 0,11 -11,1 | geo | 0,07 | -11,7 | geo | 0,09 - | -11,7 | | 0,00 | | 0,10 | | 0,11 | enjog0-Assesses | 0,40 -9,9 | g-gG | 0,17 | 0,1 | 3 | | 0,64 | C-gCC | C-g0C | -11,4 | ==C-g00======= | 0,78 -11,4 | QUACO135 | | | 0,42 -20,1 | | 0,64 | -20,2 | | 0,97 - | -30,2 | A4+-C | 0,09 -17,0 | *************************************** | 0,10 -17,0 | 2AC | 0,21 -17,0 | CSangenjeredeng | 0,40 | Adm-C | 2AC | A4==C================================== | 1 -17,0 | Advictoria | 0,74 -17,0 | 32 | A | -18,6 | AnniConstruction | 0,93 -18,6 | RHACESS | | DODGOODAAAAAGDOAAGCOA | 6,36 -21,1 | DOMONIAL COLLAD COL | 9,27 | -21,2 | DODOODAJAACDIJAGCOA | 8,26 - | -21,2 | | 0,12 | | 0,17 -12,8 | ENDOMENALAROSENOCIA | 13,24 -21,2 | DODROMINACOURACOL | 9,78 -21,2 | UNINNAMA COURNOM 20,11 -21,2 | 15,34 -21,2 | DESERVAÇÃO DE ROCA II. | 0 -21,2 | USSSSSATIACSUASSIA | 24,29 -21,2 | AnnhAnnguggerssin 0,12 | Annakannguggunnum 0,12 | | | 1,00 -16,3 | RHC143 | | | 0,09 | | 0,07 | | | 0,08 | | | 0,08 | | 0,09 | | 0,11 | | 0,37 | 0,76 | 0,29 | 0,3 | 3 | | 0,61 | 0,12 | 0,11 | | | 0,87 | RHC175a | | ******* | 0,10 -12,6 | ************************************** | 0,06 | -12,9 | ******* | 0,08 - | -12,9 | C | 0,12 -18,4 | | 0,11 -18,4 | стасмаловостамная | 1,02 -02,1 | | 0,33 -18,4 | ************************************** | CCHCAMACHDCCCHMANN 2,09 -22,1 | CONCAMACING CONTAGED 1,5 | 7 -22,1 | CONCARACIOCCUMANN | 2,08 -22,1 | 0,14 -19,1 | 0,16 | -19,1 | | 0,79 -19,1 | RHC175b | | A | 4,23 -21,1 | A | 3,91 - | -21,9 | | 3,86 - | -21,9 | | 0,93 -19,3 | GALUGIGAACGGCCGALGGU | 9,35 -22,4 | GALFARRANGO COGRANGO | 3,93 -22,4 | DesACessessessesses | 0,66 -17,0 | D=AC=========== 0,63 -17,0 | 0AJJUNAOCIOCCOMANI | GALUUSIAACOOCCOMUSU 1,4 | 6 -22,4 | (MANOSANI CONCUMANO) | 5,49 -22,4 | A | 0,23 | -17,8 | | 0,91 -17,8 | RHC222 | | -2-00CDs | 0,10 m.d. |
AriDenness*Co | 0,06 | n.d. | nalesiDennesses CDe | 0,08 1 | n.d. | | 0,09 | | 0,00 | | 0,13 | | 0,33 | 0,63 | 0,14 | 0,5 | 2 | | 0,66 | 0,11 | 0,11 | | | 0,84 | RHC439 | | C | 0,48 -17,6 | ************************************* | 0,66 | -17,6 | ······c······· | 0,61 - | -17,6 | ******C******** | 0,38 -17,6 | ******C******** | 0,67 -17,6 | ACUSOSTTOSTOSACUSCA | 8,42 -21,2 | ACTOCOMPONIACTOCA | 8,06 -21,2 | ACUMCHINISTERACTICA 12,81 -21,2 | acuscososososcucion 8,96 -21,2 | ACUSCOSOCOCICACUSCA 6,4 | 4 -21,2 | ACUSCOUDUSCOACUSCA | 18,17 -21,2 | 0,66 -11,4 | 1,83 | -18,7 | | 1,68 -18,7 | RHC630 | | | 0,09 | | 0,06 | | | 0,07 | | gCULessessales | 0,09 -14,5 | gCULLes | 0,09 -14,6 | QCUA | 0,12 -14,6 | gCUAssessales | 0,92 -14,6 | 0,62 | 0,11 | 0,1 | 1 | | 0,66 | gCUA | gClAssessanahas 0,13 | -14,6 | | 0,87 | RHOB28 | | | 0,61 | | 0,1% | | | 0,17 | | | 0,00 | | 0,10 | | 0,14 | | 0,12 | 0,41 | 0,16 | 0,1 | 4 | | 0,69 | 0,12 | 0,12 | | | 0,79 | RHOBH2 | | i-A | 0,11 -12,6 | *************************************** | 0,06 - | -12,8 | *************************************** | 0,08 - | -12,8 | ***** | 0,34 -17,2 | | 0,09 -14,6 | | 0,16 -16,2 | | 0,30 -16,2 | A2 | AD | | 4 -15,2 | *************************************** | 0,68 -16,2 | 0,25 -17,2 | 0,27 | -17,2 | | 0,83 -17,2 | RHOTE1280 | | DACCOLOGIANGANGCAC | 7,84 -21,4 | | 0,92 | -16,1 | | 1,68 - | -16,1 | *************************************** | 0,09 -9,9 | ensia Dalanessana | 0,11 -9,9 | *****CAA******* | 0,17 -12,2 | | 0,35 | 0,46 -12,2 | 0,18 | *****gAA****************************** | 4 -13,1 | jal | 0,47 -13,1 | 0,13 | 0,18 | | | 0,70 | 53-405 | | | 0,28 -17,9 | | 0,64 | -17,5 | | 0,44 -: | -17,6 | | 0,28 -17,6 | c | 0,21 -17,6 | c | 0,18 -16,4 | w | 0,34 -16,4 | 0,66 | UG | AngGerragingerrageA 0, 1 | , | | 0,61 | CONCENSIARISMESSASS 0,95 -18,5 | CONCENSIONATION 2,28 | -18,6 | | 0,79 | STEBA1426 | | | 0,10 | | 0,06 | | | 0,08 | | | 0,09 -19,6 | | 0,10 -16,4 | | 0,14 -19,6 | | 0,31 | 0,46 | | | 4 -19,6 | | 0,49 -19,6 | 0,19 -21,0 | | -21,0 | | 0,81 -21,0 | STEBA214 | | -kg-Ziri | 0,09 -7,7 | *************************************** | 0,06 | -2,2 | -ig-01-i | 0,07 | -7,7 | | 0,08 | | 0,08 | | 0,11 | | 0,28 | 0,48 | 0,10 | 0,2 | 3 | | 0,48 | ACSAAACSSSSSCCCCSA 0,94 -23,1 | ACSAAACSSUSSCOOCSA 1,41 | -23,1 | | 1,20 -19,7 | STERAME | | *iAerà+Cerren | 0,09 -9,6 | viiZenā-Cerrenne | 0,06 | -9,6 | #WANACCHARLES | 0,08 - | -9,6 | UlakenggengeneTene | 0,08 | *************************************** | 0,00 | | 0,14 | | 0,32 -9,9 | 0,66 | 0,16 | 0,5 | х | | 0,61 | ACODOCURCUAAMBACOD 4,18 -20,6 | ACOGOCUACUACIDACIDA | -20,6 | ACRESOCIACUSACIONOS | 8,59 -22,5 | STERAGE | | «Consesses «Calleges | 0,11 -9,6 | «Consesses Codeges | 0,07 | -9,6 | «Consesses «College» | 0,09 - | -9,6 | +C+++++++C+C+g++ | 0,09 -8,9 | +C+++++++C+C+g++ | 0,09 -8,9 | | 0,11 | | 0,34 | 0,69 | 0,16 | 0,1 | х | | 0,66 | 0,11 | GUUGGURACUUMAGAACU \$,34 | -18,2 | | | | | | 0,10 | | 0,06 | | | 0,08 | | | 0,08 | | 0,08 | | 0,13 -12,3 | | 0,29 -12,3 | | AC- 0,11 -12,3 | AC- 0,1 | 2 -12, 1 | ACs | 0,61 -12,8 | CONCASSACIONMOSOSOS 0,60 -18,2 | | -12,2 | | | STEBAGAS | | | 0,11 | | 0,06 | | | 0,10 | | | 0,10 | | 0,11 | | 0,11 | G-GG-C | 0,32 -10,4 | 0,64 | 0,16 | 0,1 | 3 | | 0,60 | 0,13 | 0,11 | | | | THATE-461 | | usessesses congress | 0,09 -8,6 | useeeeeecoogeee | 0,06 | - | uu | 0,08 - | | ā maža meno nego Co | 0,09 -11,1 | uthanggan ang ang agg | 0,09 | 47A=g====g=g=gg | 0,12 | | 0,31 | 0,63 | USAn-gg-g-g-g-g-0,12 | ****A******C+CA 0,1 | 8 -11,4 | ****A*******C*CA | 0,60 -11,4 | 0,10 | 0,10 | | | | THAUH43 | | d-d-id | 0,10 -9,8 | 0-0-10 | 0,06 | | 0=0=i0g | 0,08 - | _ | | 0,08 | | 0,08 | | 0,12 | | 0,32 | 0,67 | 0,12 | 0,1 | 1 | | 0,63 | 0,11 | 0,10 | | | 0,87 | THAUASS | | destitues essenting | 0,10 -9,8 | 0000 | 0,06 | -9,8 | 0000g | 0,07 | -9,8 | | 0,08 | | 0,08 | | 0,11 | | 0,29 | 0,40 | 0,10 | 0,1 | 1 | | 0,60 | 0,11 | 0,10 | | | 0,80 | THAUASS | | | 0,09 | | 0,06 | | | 0,08 | | | 0,10 | +Cg+gA+O++++++ | 0,13 -10,6 | | 0,11 | | 0,31 | -C-Og-A | 0,13 | 0,1 | 2 | | 0,68 | 0,16 | 0,18 | | | 0,84 | THAUHEB | | **CZ+G*********** | 0,11 | -12,8 | | 0,08 | | **CI+O********************************** | -12,8 | CleGg 0,98 | -9,6 | CArdonnego 0,28 -9,6 | | 0,11 | | 0,29 | | 0,48 | 0,10 | 0,11 | | 0,63 | | 0,10 | | 0,09 | | 0,86 | THAUS80 | |---|------|-------|---|--------|-------|--|-------|-------------------------------|-------|--|---|------------|---|------------|---|------------|-------------------------------|---|-------|--|---|-----------|------------------------|------------|--------------------|----------|-----------------| | | 0,10 | -18,0 | g-gC | 0,06 | -13,0 | 0,08 | -18,0 | 0,08 | | 0,08 | | 0,12 | | 0,32 | | 0,61 | 0,13 | 0,12 | | 0,56 | | 0,11 | | 0,10 | | 0,84 | THAU832 | | стинимомоможности | 2,04 | -22,2 | CURRENCACACOGCCCORD | 2,22 - | 22,2 | CUURUMANACOGCCCORU 1,81 | -22,2 | CONTROL CALCADO CONTROL 1, 90 | -22,2 | CUURUMCACACODCCCORU 1,67 -22,2 | CUURINCACACCOCCCOU | 1,70 -22,2 | CUURIACAACCOCCCUU | 6,81 -22,2 | CUMUMCACACCOCCOMI | 3,78 -22, | CUURIACACONCCOU 2,76 -2 | 2,2 COMMUNICACIOCOCO 1,81 | -22,2 | COMPUNCACIOCOCCU 3,46 -22,2 | *************************************** | 1,31 -19, | 9 C000018/C8/C00C00000 | 2,68 -22,5 | COMPANIACACONCOCCO | 3,35 -23 | 12,2 UNIVI 200a | | C | 1,89 | -21,1 | c | 3,52 | -21,1 | 2,64 | -21,1 | 2,42 | -21,1 | 2,65 -21,1 | C | 2,16 -21,1 | C | 6,6% -21,1 | C | 7,89 -21, | 2,68 -2 | 1,1 C 2,7% | -21,1 | C | Comments | 1,61 -18, | C | 2,92 -21,1 | C | 7,00 -23 | 12,1 UNIV13896 | | *************************************** | 0,55 | -20,6 | *************************************** | 0,78 | -20,6 | 0,98 | -20,6 | | -20,6 | 0,65 -20,5 | *************************************** | 0,60 -20,6 | *************************************** | 2,81 -20,6 | *************************************** | 1,20 -20, | 0,95 -2 | 0,5 | -20,6 | 1,21 -20,6 | | 0,61 -18, | 22 | 0,99 -20,6 | | 1,38 -20 | 10,5 UNIV1389c | | ************ | 0,10 | -12,1 | | 0,07 | -13,1 | 0,08 | -12,1 | 0,09 | -12,1 | 0,09 -12,1 | ORANIA DESCRIPTION CAMA | 6,40 -20,2 | OCEANISSO SOUTH ACCEAN | 4,21 -20,2 | OCHARIOSOSSISTERICIANA | 13,85 -20, | s dominososticumentam 5,78 -2 | 0,2 00000000000000000000000000000000000 | -20,2 | OSMATOROGOCOUTACIANIA 13,88 -30,2 | | 0,10 | | 0,10 | | 0,79 | 20GL01416 | | | 0,10 | | | 0,07 | | 0,09 | | 0,00 | | 0,10 | | 0,11 | | 0,30 | | 0,49 | 0,18 | COCOCAGNASIAASIACOCO 0, 82 | -19,6 | COCOCAMINATIACIACIOCO 1,18 -19,6 | | 0,13 | | 0,11 | | 0,76 | Z0GL0455 | | *Agg | 0,11 | -16,4 | -199 | 0,08 | 15,4 | -200 | -16,4 | -099 | -15,4 | 0,09 -16,4 | ADAACIMAMBDACOOCAD | 0,78 -17,8 | ADBACOMBAGORCAG | 0,77 -17,8 | AUMACUMOMOTINCOSCAG | 1,88 -17, | EXPLACISACISACISCOSCO | 7,4 асмассывающегоско 0,41 | -17,8 | ASSACISADASCISICAS 1,83 -17,8 | gu | 0,11 -9, | ggCgu | 0,10 -8,7 | 9999 | 0,74 | Z0GL0847 | | | 0,09 | | | 0,06 | _ | 0,07 | | 0,08 | | eseCommendamentRe 0,08 -10,2 | AND COURT CONTROL AND | 1,01 -20,1 | ANGUEROCOGOGANIANA | 0,68 -20,1 | ASSESSORESISANA | 1,69 -20, | i amuseuccentramaa 1,46 -3 | 0,1 AUGUSTOCOSCOARRADA 1,0X | -20,1 | ASSOCIOSOSSISSASA 1,34 -20,1 | | 0,11 -9, | | 0,12 -9,1 | ngandaglassa | 0,78 -9 | 9,1 ZOGL0828 | | | 0,10 | | | 0,06 | | 0,08 | | 0,08 | | -alessg-sg-00s 0,00 -8,1 | *************************************** | 0,16 -11,0 | ANNOCUCACHURACHA | 0,82 -20,2 | «Menorana Consuma | 0,61 -14, | 0,16 -1 | 1,0 ======g==Cg==CG== 0,14 | | 0,60 | enherreje «Ojes «Ose | 0,14 -7, | i salarrejerCjerdon | 0,16 -9,1 | endersejesOjessOss | 0,72 -7 | 7,1 ZORAM211 | | OgCD-0g | 0,10 | | **D****g********CO**Og | 0,06 | | **Dressgesses**C2+3g 0,07 | | -alCo | -12,6 | ************************************** | C | 0,16 -12,8 | ANDERSKAMMALACCICA | 2,77 -19,8 | AC | 0,44 -9, | 0,61 -1 | 6,7 s=CC========== 0,19 | -14,3 | **CC********************************** | 98099092- | 0,11 | 9409209 | 0,10 | | 0,78 | ZORAM41 | | | . 10 | -11.9 | | 0,06 | | 0,09 | -11.7 | 00 | -16,7 | | | | | 1.62 | | 1.00 | | | | | | 0,20 | ==0g==0======AC | 0,12 -13,1 | | 0.84 -11 | 13,7 AZA1289 | | CA******** | 0,16 | -12,1 | CânessesConsesses | 0,11 | 16,2 | CA | -15,3 | Consessed 0,12 | -13,6 | 0,83 -17,0 | C+++++++C++++++ | 0,23 -14,7 | | 0,36 | | 0,47 | C | 6,7 | -16,7 | Consesser 0,67 -16,7 | Considered Consumation | 0,14 -18, | | 0,11 -11,1 | Constant Constant | 0,79 -1 | i1,0 AZA221 | | Commission | 0,46 | -11,7 | Commoden | 0,40 - | -11,7 | Cd- 0,15 | -11,7 | | -17,3 | Communication 0,86 -17,0 | Comments | 0,90 -17,0 | Commence | 0,59 -17,0 | Comments | 1,48 -17, | 1,66 -1 | 7,0 Communication 0,86 | -17,0 | C | Condessons | 0,14 -12, | 8 Condessorada | 0,16 -12,6 | Condessessade | 0,94 -1 | 2,8 AZA234 | | | 1,02 | -17,6 | | 1,92 - | -17,6 | | -17,6 | gla 0,18 | -11,6 | **C*****Anà****** 0,22 -9,0 | | 0,26 -14,7 | | 0,38 -14,7 | | 0,64 -14, | | 4,7aAg 0,22 | -14,7 | | | 0,18 | | 0,11 | | 0,81 | AZAB29 | | ******* | 3,63 | -17,8 | | 3,18 - | -17,8 | 2,00 | -17,8 | | -17,8 | 1,01 -17,8 | | 0,68 -12,7 | | 0,7% -12,7 | | 1,02 -12, | | 2,7 | -12,7 | 1,14 -12,7 | | 4,58 -17, | | 6,62 -17,1 | | 4,93 -2 | 7,8 BONE663 | | | 0,28 | | | 0,26 | | 0,21 | | Concorgencoungs 0,08 | | 0,09 | | 0,29 | | 0,40 | | 0,92 | 0,23 | 0,26 | | 0,86 | | 0,11 | | 0,11 | | 0.86 | RHOTE206 | | *************************************** | 0,22 | -17,9 | | 0,19 | -17,9 | | -17,9 | | -17,9 | | *************************************** | 0,33 -17,9 | | 0,30 -17,9 | | 0,68 -17, | 0,24 -1 | 7,9 | -17,9 | 2,60 -17,9 | | 0,21 -17, | | 0,27 -17,1 | | 0,90 -17 | 7,9 PPV1239 |